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Abstract—One of the fundamental problems with residue arithmetic
is the difficulty associated with residue-to-binary conversion. In recently
published papers, a hardware implementation of the Mixed-Radix
system was proposed for the translation of residue coded outputs
into binary number for a digital filter realization. These methods
are presented as a block diagram or data flow chart and require
integrated circuits which are not commercially available and were to be
constructed from a number of basic logic elements. This paper presents
a more successful technique based on a mixed-radix conversion process.
The residue to binary convertor can be built using commercially avail-
able elements. To validate these results, the converters are implemented
in a Standard Logic Cell of FPGA technology.

Index Terms—Digital signal processing, mixed radix conversion
(MRC), powers of two related moduli set, residue number system
(RNS)-to-binary conversion, reverse converters, VLSI architectures.

I. I NTRODUCTION

THE residue number system (RNS) is a carry-free system for
addition, subtraction and multiplication operations. Hence, a

large dynamic range binary system can be partitioned into several
small wordlength channels in parallel. Thus, the RNS can result in
a high speed operation [1]. Today RNS is one of the most popular
technique for reducing the power dissipation and the computation
load in VLSI system design. The challenges of the RNS system
design lie in the choice of the moduli set and in the residue to
binary (R/B) conversion.

The choice of moduli set is very important and necessary for
nearly equal delay of the channels. Special moduli sets have
been used extensively to reduce the hardware complexity in the
implementation of converters and arithmetic operations [2]–[5].
Among which the triple moduli set{2n−1,2n,2n + 1} has some
benefits [4]. Because of operand lengths of these moduli, the
operation delay of this system is determined by the modulo 2n +1
channel. The latter means that, if we cut down the time required
for modulo 2n + 1 addition, we also cut down the RNS addition
time [6].

All available RNS to binary conversion methods are based on
two techniques, namely: the Chinese remainder theorem (CRT)
[7]–[9], and mixed-radix conversion (MRC) [1], [10]. A direct
implementation of the CRT is inefficient since it is based on a
large moduloM operation, whereM is the dynamic range of the
RNS. The MRC is a strictly sequential process and requires a
long delay [11]. However, special moduli sets 2n±1 and 2n,have
been used extensively to reduce the hardware complexity in the
implementation of RNS architectures, especially for the residue-to-
binary converters [5], [12]–[17]. Only block diagram and results
using VLSI technology for these architecture are given. There is a
large gap between the block diagrams and VLSI technology.
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In this paper we propose MRC VHDL realization of reverse
converter for the{2n + 1,2n,2n − 1} moduli set. Only standard
integrated circuits can be used for convertor implementation.

The paper is organized as follows. In section II, we provide
a short overview of residue number systems (RNS). Section III
provides hardware implementation and section IV is simulation.
Section V is Conclusion.

II. BACKGROUND

Residue number system (RNS) is defined in terms of a set of
relatively prime moduli set{mi}i=1,n such that gcd(mi;m j) = 1 for
i 6= j, where gcd means the greatest common divisor ofmi and
m j, while M = ∏n

i=1 mi, is the dynamic range for unsigned residue
number system. For signed residue number system dynamic range
is [−M/2,M/2−1]. Thus in a signed number system the lower half
of the dynamic range is reserved for the negative numbers.

The residues of a decimal numberX can be obtained as

xi =

{

〈X〉mi , if X ≥ 0

mi−〈|X |〉mi , otherwise
(1)

thus X can be represented in RNS asX = {x1,x2,x3, . . . ,xn},
0 ≤ xi < mi. This representation is unique for any integerX ∈
[−M/2,M/2− 1]. We note here that in this paper we use〈X〉mi

to denote theX mod mi operation and the operator◦ to rep-
resent the operation of addition, subtraction, or multiplication.
Given any two integer numbersX and Y in RNS represented
by X = {x1,x2,x3, . . . ,xn} andY = {y1,y2,y3, . . . ,yn}, respectively,
Z = X ◦ Y , can be calculated asZ = {z1,z2,z3, . . . ,zn}, where
zi = xi ◦ yi , for i = 1, . . . ,n. This means that the complexity of
the calculation of the◦ operation is determined by the number of
bits required to represent the residues and not by the one required
to represent the input operands.

A. A residue adder and subtractor

The residue sum of two residue digits,〈xi +yi〉mi , is the residue
of the sumxi + yi with respect to the modulusmi. The operation
may be defined as follows.

zi = 〈xi + yi〉mi =

{

xi + yi, if xi + yi < mi

xi + yi−mi, if xi + yi ≥ mi
(2)

with 0≤ xi,yi ≤ mi−1.
The subtraction operation may be defined as follows

zi = 〈xi− yi〉mi =

{

xi− yi, if xi ≥ yi

xi− yi +mi, if xi < yi
(3)

with 0≤ xi,yi ≤ mi−1.

B. Mixed Radix Conversion

The conversion from RNS to binary using Mixed Radix Con-
version (MRC) can be formulated as follows [1]: given ann-digit
binary numberX = {u1,u2,u3, . . . ,un} in an RNS with the set of
relatively prime integer moduli{mi}i=1,...,n one has to find a set of



digits {v1,v2,v3, . . . ,vn}, which are the mixed radix digits (MRD),
such that Equation (4) holds true

X = v1 + v2 m1 + v3 m1m2 + · · ·+ vn

n−1

∏
i=1

mi (4)

were arem1, m1m2, . . ., ∏n−1
i=1 mi mixed-radix.

The mixed radix digitsvi, 0 ≤ vi < mi can be computed as
follows [18]:

v1 =u1

v2 =
〈

(u2− v1)c12
〉

m2

v3 =
〈

((u3− v1)c13− v2)c23
〉

m3

...

vn =
〈

((· · ·(un− v1)c1n− v2)c2n− . . .− vn−1cn−1,n
〉

mn

(5)

where ci, j for 1 ≤ i ≤ j < n is the multiplicative inverse ofmi
modulo m j, or 〈ci j × mi〉m j = 1. If the mixed-radix digits are
given, any number in the interval[−M/2,M/2−1] can be uniquely
represented.

Thus, the MRC is sequential and involves modulo subtractions
and modulo multiplication by multiplicative inverses of one mod-
ulus with respect to the remaining moduli.

C. Chinese Reminder Theorem

The residue number{x1,x2,x3, . . . ,xn} can be converted into the
decimal numberX , according to the Chinese Reminder Theorem
(CRT), as follows [1]:

X =
〈 n

∑
i=1

Mi〈M
−1
i 〉mi xi

〉

M
(6)

whereMi = M/mi, andM−1
i is the multiplicative inverse ofMi with

respect tomi.
The CRT requires a large modulo operation of size M, which is

not efficient.

III. H ARDWARE IMPLEMENTATION

A. Adder and Subtractor

Bayoumi and Jullien [19] describe a modular adders that utilizes
two binary adder and a multiplexer, shown in Fig. 1(a). The first
adder adsx andy. The second adder adds the sum to 2n−m. The
carry bit generated from the second adder indicates whether or not
(x+ y) is greater thanm.

Modulo m substraction can be implemented by two cycles:
substraction and addition. The first cycle is substraction two inputs
signalsx and y, and the second cycle adds a correction factor of
m to the difference rom the first cycle. The borrow bit generated
from the subtractor indicates whether or notx is greater thany.
This implementation is shown in Fig. 1(b).

B. The Reverse Converter

Given the RSN numbers{u1,u2,u3} with respect to moduli set
{2n + 1,2n,2n − 1} the proposed algorithm computes the binary
equivalent of this RNS number using mixed radix conversion
technique. First, we demonstrate that the computation of the mul-
tiplicative inverses can be eliminated for this moduli set.

If it can be demonstrated that〈c12(2n +1)〉2n = 1, thenc12 = 1
is the multiplicative inverse of 2n +1 with respect to 2n

〈c12(2
n +1)〉2n = 〈2n +1〉2n = 1

thus,c12 = 1 holds true.

+

+
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+
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−
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(a) (b)

Fig. 1. Modulo adder (a) and modulo subtractor (b) with serialmethod.

In the same way, if it can be shown that〈c232n〉2n−1 = 1, then
c23 = 1 is the multiplicative inverse of 2n with respect to 2n−1.

〈c232
n〉2n−1 = 〈2n〉2n−1 = 1

thus,c23 = 1 holds true.
Again, if it can be proved that〈c13(2n +1)〉2n−1 = 1, then 2n−1

is the multiplicative inverse of 2n +1 with respect to 2n−1.

〈c13(2
n +1)〉2n−1 = 〈2n−1(2n +1)〉2n−1

= 〈2n−1(2n−1+2)〉2n−1

= 〈2n〉2n−1 = 1

thus,c13 = 2n−1 holds true.
Next, we assume the residue representation of numberX =
{u1,u2,u3}RNS{m1,m2,m3}, and by substitutingc12 = 1, c13 = 22, and
c23 = 1 in Eq (4), we obtain following expressions

Y = v1 + v2m1 + v3m1m2 (7)

where
v1 =u1

v2 =〈u2− v1〉m2

v3 =〈2n−1(u3− v1)− v2〉m3

(8)

The hardware realization of MRC algorithm (7) is presented in
Fig. 2 for the three moduli set. The first mixed radix digit isu1.
The first step in MRC algorithm is to obtainv2 = 〈u2−u1〉m2 and
v13 = 〈u3−u1〉m3. In the next step,v13 is multiplied modm3 with
the multiplicative inverse ofm3 with respect tom1. This yields the
third mixed radix digitv′13. The desired binary number next can be
obtained as〈v′13− v2〉m3.

u1 u2 u3

Mod Mod

Mod

Mod

2n 2n−1
Subtr. Subtr.

− −

2n−1

v13

v′13

2n−1

Mult.

2n−1
Subtr.

−

v3

v1 v2

Fig. 2. Mixed-Radix conversion for{2n +1,2n,2n−1} moduli set.



Block for RNS multiplicationv13 with 2n−1 is very simple. The
bits of v13 are shifted left (multiplied by 2n−1) to achieve properly
result. The length of this register is 2n bits. Binary numbers on 2n
bits can be represented as follows:

v′13 = 〈k12n + k0〉2n−1

= 〈k1(2
n−1+1)+ k0〉2n−1 = k1 + k0

(9)

wherek1 and k0 are the corresponding high and lown bits word,
respectively. Thus

v′13 = 〈2n−1v13〉2n−1 = k1 + k0

We now illustrate this procedure forn = 6 and v13 = 〈u3−
u1〉63 = 10. The binary representation ofv13 is [0001010]. After
multiplication with 25 binary number it is[000101 000000].
Thus last six bits arek0 = 0000002 = 0 and first six bits are
k1 = 0001012 = 5. Hencev′13 = 〈v13×25〉63 = k1 + k0 = 5.

Distributed arithmetic (DA) is used to compute inner product (7)
because of efficiency DA architecture. In a DA architecture, the
multiplier is eliminated by employing a memory to store linear
combinations of mixed radix digits. Figure 3 shows DA-based
implementation of a 3-moduli set residue to binary conversion.
The DA architecture consists of four small units: the shift register
unit, the DA base unit, the adder/shifter unit, and positive/negative
number separation unit.

Shift Reg.←

Shift Reg.←

Shift Reg.←

b0

b1

b2 b2 b1 b0

v3

v2

v1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Data
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Fig. 3. LUT-based DA implementation for a 3set residue to binary
converter. The DA architecture consists of four small units:the shift register
unit, the DA base unit, the adder/shifter unit, and positive/negative number
separation unit.

The memory addresses are formed by grouping bits in the same
bit position from successive input mixed radix digits. The input is
shifted in one bit left at a time into registersvi, i = 1,2,3. The output
is available from the accumulator once every block{b2 b1 b0} . The
size of memory block is 23 words. Data is shifted every clock cycle
and the LUT outputs are shifted and accumulated.

Adder/Shifter unit contain standard adder, accumulator and shift
register. The dynamic range isM = 2n(22n−1)≃ 23n. Hence size

of accumulator is 3n (18) bits. This is donem times wherem is the
length of shift registersvi. At the end of everym−1 clock cycles,
the output is tapped at properly valueY .

IV. M ATLAB
R©

AND VHDL SIMULATION

The performance of the proposed converter is evaluated by both
performing a theoretical analysis using MATLAB

R©
software and

experimentally by implementing it on an FPGA chip.

A. MATLAB
R©

simulation

Let the given RNS number beX = {30,32,19}RNS{65,64,63}
in binary form. We convert this number representation into the
mixed-radix number representation withv3,v2,v1 using Mixed-
Radix convertor shown in Figure 2:v1 = 30, v2 = 2 andv3 = 24,
or in binary representation these are

v1 0011110 b2
v2 0000010 b1
v3 0011000 b0

The contents of of the 8-word ROM are shown in Table I. A
scaling accumulator multiplier performs multiplication using an
iterative shift-add routine.

TABLE I
LOOKUP TABLE FOR{65,64,63} MODULI SET

Address LUT Output

000 0 0
001 m1m2 4160
010 m1 65
011 m1 +m1m2 4225
100 1 1
101 1+m1m2 4161
110 1+m1 66
111 1+m1 +m1m2 4226

Thus, seven addressesb2b1b0 are: 000, 000, 101, 101, 100, 110
and 000. The output result is

Y =0+(66+(1+(4161+(4161

+(0+0×2)×2)×2)×2)×2)×2 = 100000
(10)

It is shown, after six shifts and accumulates, the output wordY
is finished.

B. VHDL simulation

The proposed implementation is programmed (Described) and
implemented using VHDL language which is a Hardware Descrip-
tion Language that was developed by the Institute of Electrical and
Electronic Engineers (IEEE) as a standard language for describing
the structure and behavior of digital electronic systems. A 18-bit
precision reverse converter using 7-bit moduli set{65,64,63} was
implemented as a VHDL model in 0.35 micron CMOS technology
using Synopsys tools.

Each part of residue to binary converter is described in VHDL
programming language and implemented in EP2C35F672C6N
FPGA chip on Altera DE2 board. VHDL simulation of forward
RNS converter is shown in Fig. 4. There are five RNS number
(30,32,19), (54,27,38), (62,48,22), (50,24,62) and (3,25,55).
According to the Figure 4, the results of VHDL implementation
are: 100 000, 77339,−25808,−130600 and 18073, respectively.

The results of implementation performance are shown in Table II.
From Table II can be seen that converter does not require a lot

of FPGA resources (less than 1%) and has a maximal throughput
of 277.47 MHz.



Fig. 4. Residue to binary converter VHDL simulation results.

TABLE II
FPGA IMPLEMENTATION OF REVERSE CONVERTER.

Logic elem. % of FPGA Fmax [MHz]

Converter 255/33216 < 1 % 277.47

V. CONCLUSION

A VHDL implementation for residue to binary converter using
popular moduli set{2n + 1,2n,2n−1} is presented in this paper.
We used an MRC technique for efficient RNS to binary conversion.
First, we demonstrate that the computation of the required multi-
plicative inverse can be simplified. Next, corresponding formulas
for the conversion process which can be easily implemented using
only three subtractors have been derived. It has been shown that
the overall conversion process will require 2 levels of subtractors
and one level multiplier. Distributed arithmetic for compute for
computing inner product value of mixed-radix number is used.
Only standard integrated circuits can be used for reverse convertor
implementation.

The performance of proposed converter architecture are de-
termined using MATLAB

R©
software and VHDL programming

language.
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