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Abstract—One of the fundamental problems with residue arithmetic In this paper we propose MRC VHDL realization of reverse
is the difficulty associated with residue-to-binary convesion. Inrecently  converter for the{2" +1,2",2" — 1} moduli set. Only standard

published papers, a hardware implementation of the Mixed-Raix  nieqrated circuits can be used for convertor implementation.
system was proposed for the translation of residue coded opiits

into binary number for a digital filter realization. These methods The paper is organized as follows. In section Il, we provide
are presented as a block diagram or data flow chart and require a short overview of residue number systems (RNS). Section llI
integrated circuits which are not commercially available ard were to be  provides hardware implementation and section IV is simulation.
constructed from a number of basic logic elements. This papepresents  gection V is Conclusion
a more successful technique based on a mixed-radix convewsi process. '
The residue to binary convertor can be built using commercidly avail-
able elements. To validate these results, the convertersaimplemented Il. BACKGROUND
in a Standard Logic Cell of FPGA technology. Residue number system (RNS) is defined in terms of a set of
Index Terms—Digital signal processing, mixed radix conversion relatively prime moduli sefm}i—1, such that gctimi; mj) = 1 for
(MRC), powers of two related moduli set, residue number syst@ j_£ j where gcd means the greatest common divisompfand
(RNS)-to-binary conversion, reverse converters, VLSI arbitectures. m;, while M = |_|in:1mv is the dynamic range for unsigned residue
number system. For signed residue number system dynamic range
I. INTRODUCTION is [—M/Z,M/Z_—l]. Thqs in a signed number sys_tem the lower half
_ _ of the dynamic range is reserved for the negative numbers.
THE residue number system (RNS) is a carry-free system for The residues of a decimal numb¥rcan be obtained as
addition, subtraction and multiplication operations. Hence, a .
{<x>m, if X>0
P =

large dynamic range binary system can be partitioned into several : 1)
small wordlength channels in parallel. Thus, the RNS can result in m —([X|)m, otherwise

a high speed operation [1]. Today RNS is one of the most populgt s x can be represented in RNS 6= {X1,%2,%3, ..., %n},
technique for reducing the power dissipation and the computatig .- xi < m. This representation is unique for any integére
load in VLSI system design. The challenges of the RNS SyStem—R/I/Z,M/Z—l]. We note here that in this paper we US&)m
design lie in the choice of the moduli set and in the residue ) denote theX mod m operation and the operater to rep-

binary (R/B) conversion. resent the operation of addition, subtraction, or multiplication.

The choice of moduli set is very important and necessary fagjen any two integer numberX and Y in RNS represented
nearly equal delay of the channels. Special moduli sets ha‘(ﬁ,x = {X1, X2, X3, ..., X} andY = {y1,¥2,Vs,...,yn}, respectively,
been used extensively to reduce the hardware complexity in the_ x v can be calculated aZ — {21,25,7,...,22}, Where
implementation of converters and arithmetic operations [2]-{5}, _ . oy, , for i = 1,...,n. This means that the complexity of
Among which the triple moduli sef2" —1,2",2"+ 1} has some  he calculation of the operation is determined by the number of

benefits [4]. Because of operand lengths of these moduli, th§s required to represent the residues and not by the one required
operation delay of this system is determined by the modlie 2 4 represent the input operands.

channel. The latter means that, if we cut down the time required
for modulo 2'+ 1 addition, we also cut down the RNS addition
time [6].

All available RNS to binary conversion methods are based on The residue sum of two residue digits; +Yi)m, is the residue
two techniques, namely: the Chinese remainder theorem (CR®) the sumx +y; with respect to the modulusy. The operation
[7]-[9], and mixed-radix conversion (MRC) [1], [10]. A direct My be defined as follows.
implementation of the CRT is inefficient since it is based on a

A. A residue adder and subtractor

large moduloM operation, whereM is the dynamic range of the Z = (X+Yi)m = {X' M !f N+y<m 2)
RNS. The MRC is a strictly sequential process and requires a Xy —m, i x4y > m

long delay [11]. However, special moduli setd821 and 2,have with 0 < x;,y; <m —1.

been used extensively to reduce the hardware complexity in theThe subtraction operation may be defined as follows
implementation of RNS architectures, especially for the residue-to- .

binary converters [5], [12]-[17]. Only block diagram and results Zi = (X — Yi)m = {X‘ R !f X 2 i 3)
using VLSI technology for these architecture are given. There is a Xi—Yi+m, if X<y

large gap between the block diagrams and VLSI technology.  ith 0 < X,y <m—1.
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digits {vq,Vv2,vs,..., Vn}, which are the mixed radix digits (MRD),

such that Equation (4) holds true

n-1 _
X=V1+Vomy +V3mnp+- - +Vy r!m 4 m
i= ¢ ¢
n-1 P ; )
were aremy, MmNy, ..., [1i_; m mixed-radix. +
The mixed radix digitsv;, 0 <v; < m can be computed as
follows [18]:
y
Vi, =Up 1
v2 =((g —va)er2), . Y
V3 =(((U3 —V1)C13—V2)C23) ®) (b)
: Fig. 1. Modulo adder (a) and modulo subtractor (b) with semathod.
Vn :<(( ~(Un—Vvq)Cin—V2)Con— ... — vnflcnfl,n>m1
where g j for 1 <i < j <n is the multiplicative inverse ofry In the same way, if it can be shown th@bs2")»_1 =1, then

modulo mj, or (Gjj x m)m, = 1. If the mixed-radix digits are Cx3= 1 is the multiplicative inverse of 2with respect to 2— 1.

given, any number in the intervg-M/2,M /2— 1] can be uniquely n o _

represented. (C232)on 1= (2)on 1 =1
Thus, the MRC is sequential and involves modulo subtractiornthus, c,3 = 1 holds true.

and modulo multiplication by multiplicative inverses of one mod- Again, if it can be proved thatcis(2"+ 1))n_1 = 1, then 21

ulus with respect to the remaining moduli. is the multiplicative inverse of 2+ 1 with respect to 2— 1.

(€13(2"+1))n_1 = (2" 12"+ 1)1

C. Chinese Reminder Theorem
= (2" 12" —142))m_1

The residue numbefxg, X2, X3, ..., Xn} can be converted into the

_ (on _
decimal numbeiX, according to the Chinese Reminder Theorem =(2)r-1=1
(CRT), as follows [1]: thus, c13 = 2"1 holds true.
n Next, we assume the residue representation of number
X = < ziMi <M;1>mxi> (6)  {U1, U, Us}rs{m, myms)» @Nd by substitutingso = 1, ¢;3 =22, and
i= M co3=1in Eq (4), we obtain following expressions
whereM; = M/my, andM, ! is the multiplicative inverse d¥; with Y = vy -+ Vomy + Vamymp @)
respect tom.
The CRT requires a large modulo operation of size M, which ighere Vi —u
not efficient. 1=
V2 =(U2 — V1)m, (8)
I1. HARDWARE IMPLEMENTATION v3 =(2" Uz —v1) — Vo),
A. Adder and Subtractor The hardware realization of MRC algorithm (7) is presented in

Bayoumi and Jullien [19] describe a modular adders that utilizefsig. 2 for the three moduli set. The first mixed radix digituig
two binary adder and a multiplexer, shown in Fig. 1(a). The first he first step in MRC algorithm is to obtai = (uz — u;)m, and
adder adx andy. The second adder adds the sum fo-2n. The V13 = (U3 — U1)m,. In the next stepy;3 is multiplied modmg with
carry bit generated from the second adder indicates whether or 1B multiplicative inverse ofnz with respect tam. This yields the
(x+y) is greater tham. third mixed radix digitv; 5. The desired binary number next can be

Modulo m substraction can be implemented by two cyclesObtained asVi3 — V2)m-
substraction and addition. The first cycle is substraction two inputs

signalsx andy, and the second cycle adds a correction factor of - e e
m to the difference rom the first cycle. The borrow bit generated » l
from the subtractor indicates whether or nots greater thary. _WMO‘ v
This implementation is shown in Fig. 1(b). o n-1
Subtr. Subt]
2n—1
B. The Reverse Converter \ v 3 v©
Given the RSN number§us, up, u3} with respect to moduli set Vi V2 2|\n/|81
{2"+1,2" 2" — 1} the proposed algorithm computes the binary Mult.
equivalent of this RNS number using mixed radix conversion Vi
technique. First, we demonstrate that the computation of the mul- - Mo‘
tiplicative inverses can be eliminated for this moduli set. n-1
If it can be demonstrated th&t»(2" + 1)) = 1, thencip =1 Subtr.
is the multiplicative inverse of 2+ 1 with respect to 2
(C12(2"+1))n = 2"+ L)n =1 V3

thus,ci» = 1 holds true. Fig. 2. Mixed-Radix conversion fof2"+1,2",2" — 1} moduli set.



Block for RNS multiplicationvy 3 with 2"—1 is very simple. The of accumulator is 8 (18) bits. This is donen times wheremiis the
bits of v13 are shifted left (multiplied by 2°1) to achieve properly length of shift registers;. At the end of everyn— 1 clock cycles,
result. The length of this register is1dits. Binary numbers onr2  the output is tapped at properly vale
bits can be represented as follows:

Vi = (ka2 + Ko)an 1 IV. MATLAB® AND VHDL SIMULATION

= (ke (2"~ 1+ 1)+ ko)an_1 = kg + ko ©) The performance qf the propgsed .converter(és evaluated by both
performing a theoretical analysis usingAWLAB — software and

wherek; andkg are the corresponding high and lawbits word, experimentally by implementing it on an FPGA chip.

respectively. Thus
Viz= (2" Vig)an_1 = kg + ko A. MATLAB® simulation

We now illustrate this procedure fan = 6 and viz = (uz — Let the given RNS number b& = {30,32 19}rns(656463}
u1)e3 = 10. The binary representation efz is [000101(. After in binary form. We convert this number representation into the
multiplication with 2 binary number it is[000101 00000 Mixed-radix number representation wiify,vz,v1 using Mixed-
Thus last six bits are& = 00000@ = 0 and first six bits are Radix convertor shown in Figure 23 = 30, v, = 2 andvs = 24,

ky = 00010% = 5. Hencev); = (Vi3 x 25)63 = ki + Ko = 5. or in binary representation these are
Distributed arithmetic (DA) is used to compute inner product (7) vy | 0011110]| by

because of efficiency DA architecture. In a DA architecture, the Vo | 0000010| by

multiplier is eliminated by employing a memory to store linear vz | 0011000| bg

combinations of mixed radix digits. Figure 3 shows DA-based

. . . . - - The contents of of the 8-word ROM are shown in Table I. A
implementation of a 3-moduli set residue to binary conversion. _. o Lo .

: . . . . . scaling accumulator multiplier performs multiplication using an
The DA architecture consists of four small units: the shift regIStelrterative shift-add routine
unit, the DA base unit, the adder/shifter unit, and positive/negative ’

number separation unit. TABLE |
LOOKUP TABLE FOR{65,64,63} MODULI SET

___ DABaseUnit __
__ Shift Register Unit | ] Address| LUT Output |
| bp! 1 [babrbo Data 000 0 0
[ . Zlooo 0 001 mmp 4160
—|-)|| Shift Reg.<V1 | '_) 001 mm 010 my 65

Serial Inputs

|
| bo 101 | 1+mm 111 14+m+mmp | 4226

|
|
|
| T 110 1+my
Shift Reg. Vs : 1111 1+m+mny
]

|
|
|
|
|
|
100 1 1
! e 011 | my+mmy | 101 1+mm | 4161
oo | 1 |1 10 | 1em | 66
|
|
|
|

Thus, seven addressbshibg are: 000, 000, 101, 101, 100, 110
and 000. The output result is

Y =0+ (664 (1+ (4161+ (4161
+(0+0x2)x2) x2) x2)x2) x2=100000

It is shown, after six shifts and accumulates, the output Wword
is finished.

(10)

B. VHDL simulation

The proposed implementation is programmed (Described) and
implemented using VHDL language which is a Hardware Descrip-
tion Language that was developed by the Institute of Electrical and
Electronic Engineers (IEEE) as a standard language for describing
the structure and behavior of digital electronic systems. A 18-bit

v precision reverse converter using 7-bit moduli 85, 64,63} was
. . . . ___implemented as a VHDL model in 0.35 micron CMOS technology
Fig. 3. LUT-based DA implementation for a 3set residue to binar .
converter. The DA architecture consists of four small urifte: shift register using Synopsys toqls. . . . .
unit, the DA base unit, the adder/shifter unit, and positiegative number ~ Each part of residue to binary converter is described in VHDL
separation unit. programming language and implemented in EP2C35F672C6N
FPGA chip on Altera DE2 board. VHDL simulation of forward

The memory addresses are formed by grouping bits in the sarRINS converter is shown in Fig. 4. There are five RNS number
bit position from successive input mixed radix digits. The input 30,32, 19), (54,27,38), (6248,22), (50,24,62) and (3,25,55).
shifted in one bit left at a time into registersi = 1,2,3. The output  According to the Figure 4, the results of VHDL implementation
is available from the accumulator once every bldblb; bp} . The  are: 100000, 77339,-25808,—130600 and 18073, respectively.
size of memory block is2words. Data is shifted every clock cycle  The results of implementation performance are shown in Table II.
and the LUT outputs are shifted and accumulated. From Table Il can be seen that converter does not require a lot

Adder/Shifter unit contain standard adder, accumulator and shiff FPGA resources (less than 1%) and has a maximal throughput
register. The dynamic range M = 2"(22"— 1) ~ 25", Hence size of 277.47 MHz.
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Fig. 4. Residue to binary converter VHDL simulation results.

TABLE Il

FPGAIMPLEMENTATION OF REVERSE CONVERTER [7] R. M. Capocelli and R. Giancarlo, “Efficient vis| netwarkor convert-

ing an integer from binary system to residue number systenvined
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pp. 1425-1430, Nov. 1086, o
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